Talk:Dark matter
Dark matter in fiction was nominated for deletion. The discussion was closed on 11 December 2022 with a consensus to merge. Its contents were merged into Dark matter. The original page is now a redirect to this page. For the contribution history and old versions of the redirected article, please see its history; for its talk page, see here. |
This is the talk page for discussing improvements to the Dark matter article. This is not a forum for general discussion of the article's subject. |
Article policies
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8Auto-archiving period: 3 months |
This page is not a forum for general discussion about Dark matter. Any such comments may be removed or refactored. Please limit discussion to improvement of this article. You may wish to ask factual questions about Dark matter at the Reference desk. |
Dark matter was one of the Natural sciences good articles, but it has been removed from the list. There are suggestions below for improving the article to meet the good article criteria. Once these issues have been addressed, the article can be renominated. Editors may also seek a reassessment of the decision if they believe there was a mistake. | ||||||||||||||||
| ||||||||||||||||
Current status: Delisted good article |
This level-4 vital article is rated B-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||||||||||||||||
|
This article has been mentioned by a media organization:
|
Index
|
||||||||
This page has archives. Sections older than 90 days may be automatically archived by Lowercase sigmabot III when more than 3 sections are present. |
Anyone got a figure showing the scale dropoff with hot dark matter?
[edit]I'm thinking something like this to illustrate how hot dark matter washes out perturbations at small scales, but I don't know if it's copyrighted and/or if Wikipedia already has an appropriate figure. Banedon (talk) 08:04, 16 January 2025 (UTC)
Proposal to add the following sections (or parts of them)
[edit]The following discussion is closed. Please do not modify it. Subsequent comments should be made on the appropriate discussion page. No further edits should be made to this discussion.
Section: 2023 and onward
Based on more and more surfacing evidence speaking for the annihilation of dark matter throughout the universe and their apparent relation to stellar and galactic neutrinos, neutrinos have become a promising dark matter particle candidate again (see the sections on alternative hypotheses and on annihilation of dark matter below).
[and the following under & after the section Alternative hypotheses:]
However, recently (from 2023 onward) neutrinos have (again) become a highly plausible dark matter candidate, in opposition to former preconceptions of them having been ruled out already. Additional to the attempt to explain several diverse astrophysical and cosmological phenomena all together at once, solely by adding the assumption that dark matter can annihilate (see the next section below), in the pathway of trying to explain all of dark matter to solely be the known kinds of neutrinos, there appear to be 2 or possibly 3 major hurdles that need to be resolved:
I. Current estimates on their abundance indicate an insufficient abundance to make up all of dark matter.
II. Vast amounts of dark matter is bound to individual galaxies or groups, clusters of galaxies, but all neutrinos are created with relativistic speeds with which they cannot stay bound to galaxies unless for enough of them, a mechanism existed by which they can be slowed down sufficiently much.
III. The so-called Tremaine-Gunn bound based on Pauli's exclusion principle in (the not yet fully understood) quantum mechanics puts an upper limit on how densely neutrinos as fermionic matter can be packed [though the relevance of this bound for neutrinos as dark matter particle candidates has since been put into question by physicists; citation needed], which might lead to problems for if too high CDM densities were to be required to be present in the vicinity of various kinds of black holes and to explain phenomena causally related to the quantitative abundance of CDM near black holes, compared to how densely neutrinos as CDM particle candidates could be packed. Seemingly only the Tremaine-Gunn bound, an estimate - relying on & based on the for fermions such as neutrinos applying Pauli exclusion principle as well as the assumed effective radius of the in flavor oscillating neutrinos - which is about the hypothetical maximal possible neutrino density in a given region of space - were to remain speaking against neutrinos as dark matter, but there's no observational confirmation of such limit and it may be far too low for various thinkable plausible reasons such as there possibly existing more state determining parameters for neutrinos, and with each further parameter, the number of (based on associated exclusion rules) stackable neutrinos may grow exponentially and allow for sufficiently heavy neutrino clouds. [Tremaine-Gunn bound: https://theoretical-physics-digest.fandom.com/wiki/Tremaine_Gunn_Bound]
In order to address the first hurdle (I.) even if physicists (for their abundance estimates on the total amount of neutrinos) would already have accounted for the increased difficulty of detection of especially ancient neutrinos for if they assume space inflation's existence in their models (which not all cosmological models do), and that space inflation were to slow ancient neutrinos down and make them harder to detect, then independent of if this is the case or if instead gravitational red-shift of light (and gravitational slowdown of such neutrinos) were the actual underlying cause (if matter were to not exist infinitely far in every direction, and if the cosmological scale overall gravitational well were to become less deep as galaxies move away from each other) were inflation were to not exist or were to be weaker, then they'd still be off in their abundance (under-)estimates of neutrinos because in the former models they'd assume these neutrinos existed more or less uniformly distributed throughout space, to then be slowed down, but if their origin is in the depths of population III stars [As visualization for intuitively understanding the only so far hypothesized to have existed but dominantly by people in the field assumed to have existed population III stars (except that the spherical supernova shown shouldn't lead to a spiral galaxy and that even just near or entirely symmetrical collapse – leaving the central black hole stationary - should be highly unlikely): "Black Hole Star – The Star That Shouldn't Exist": https://www.youtube.com/watch?v=aeWyp2vXxqA ], then there'd be an additional slowdown to be accounted for, based on this specific origin. [["Given the constraints we have today, we can conclude that approximately 0.5% to 1.5% of the dark matter is made up of neutrinos." (This estimate though is incorrect, since it relies on inaccurate assumptions.) https://bigthink.com/starts-with-a-bang/how-much-of-the-dark-matter-could-neutrinos-be/ ]]
[Cosmic red-shift alternatively explained as gravitational redshift with respect to the gravitational potential well of the mass of the entire universe, or evidence (namely supernovae of more distant stars lasting longer, as well as the gravitational time dilation that is associated with deeper locations in gravitational potential wells, according to general relativity theory), which are qualitatively consistent with it: "Bizarre 3-Year-Long Supernova Defies Our Understanding of How Stars Die" https://www.space.com/38708-bizarre-supernova-defies-understanding.html "Time Ran Slower in the Past, Physicists Find": https://www.youtube.com/watch?v=RuSbqFL6VcY ]
Independent of it being space inflation or a cosmological gravitational well being reduced in its depth to slow down ancient neutrinos, given that physicists still have competing hypotheses about how super-massive black holes were formed, namely step-wise by the merging of less massive stars, or from super-massive individual stars with far deeper gravitational wells each, they may not assume the additional slowdown of neutrinos that would come with such population III stars if they don't use models that involve them, and hence would under-estimate the abundance of neutrinos if they took a model in which the supermassive black holes formed by repeated merger processes of ancient stars. Besides this, according to a study, the Milky Way is a "neutrino desert", which may lead to neutrino abundance estimates for the universe in general to be too low. ["IceCube shows Milky Way galaxy is a neutrino desert": https://news.wisc.edu/icecube-shows-milky-way-galaxy-is-a-neutrino-desert/ ]
In regard to the second hurdle (II.), if ancient neutrinos were formed deep down in the gravitational wells of super-massive, uniquely gargantuan, roughly solar-system-sized population III stars, then even with initial relativistic speeds, they could be slowed down enough by their extraordinary gravity to from that point onward end up as slow neutrinos, i.e. as cold dark matter (CDM).
According to multiple studies, specifically the presence of so-called ultra-lightweight dark matter in large abundances in the vicinity of black holes appears to resolve the so-called final parsec problem [Wikipedia has a page on the final parsec problem]. The known to exist kinds of neutrinos are ultra-lightweight particles. ["Final parsec problem of black hole mergers and ultralight dark matter": https://arxiv.org/abs/2311.03412 (though at this point, as far as I know, there should already be further studies supporting this result)]
If neutrinos were to actually exist in large enough abundances, all the stars' relativistic neutrinos suffice without the need of additional abundant enough other kinds of dark matter to make up the cosmic dark matter web's filaments, which galaxies close to them were to be able to bend more by their gravitation if the particle flow through the filaments were to be slower e.g. if more massive dark matter particles were to not be as likely or abundantly accelerated to or already by default move with relativistic speeds.
Evidences besides annihilation that speak specifically for neutrinos as CDM, including evidences that speak for super-massive pop. III stars' existence, since they (due to their exceptionally deep gravitational wells that the initially relativistic, escaping neutrinos produced in fusion down there would be slowed down by) would be needed as source for slow neutrinos:
(i) The elongated, baguette- or banana-like shape of in youngest stage of development recently at furthest distances discovered galaxies: These shapes indicate that the origin of galaxies does come from population III stars, namely as the result of asymmetric collapse processes of these super-massive stars, in which the massive black holes in their center would be in an unstable inward pressure equilibrium, which once the pressure from all sides gets out of balance may more and more push the central black hole out of the star in some direction, while the star undergoes its supernova, after which its former plasma would be gravitationally attracted towards the location to which the black hole was kicked out [see the reference on the point (ii) just beneath supporting the plausibility of the possibility of this process], to then swing back and forth around its location (or rather their shared overall gravitational center) for an extended time. [A podcast about the baguette- or stick-shaped, furthest away located galaxies: "#10 - Viraj Pandya - Early Galaxies with JWST, Galaxies "Gone Bananas", Galaxy Formation": https://www.youtube.com/watch?v=nTGSv0AUi_4]
(ii) The existence of massive so-called hyper-velocity (O and B type) stars: The fact that their stellar black hole remnants can get a kick when these stars undergo a supernova event support the possibility of a similar process plausible being possible for the hypothesized ancient population III stars. [On Asymmetric star-collapse and so-called hyper-velocity (O or B type) stars: "While matter is thrown out by the explosion more strongly to one side, the neutron star receives a kick in the opposite direction." https://wwwmpa.mpa-garching.mpg.de/~thj/popular/Collapsing_stars.html ; "Exploring The Origin of Runaway Stars Escaping The Galaxy, What Forms Them?": https://www.youtube.com/watch?v=1Wk7h_GplQU ]
(iii) The existence of satellite galaxies in the first place, especially around spiral galaxies, and their arrangement, namely being located in or close to a plane, both for our galaxy and in the case of the Andromeda spiral galaxy with its satellite galaxies: This also speaks for population III stars' existence and their asymmetric collapse dynamic, since especially if the in them contained massive black hole gets kicked out at small angle to their plane of rotation (rather than at close angle to their axis of rotation), then for these (due to their rotation and the centrifugal force) rotational ellipsoid shaped stars, this should rather lead to the formation of a future spiral galaxy [citation or geometric mathematical/physical argumentation or intuition needed], and roughly 1 hemi-sphere of plasma of the star will be moving in the opposite (or up to orthogonal) direction to the direction to which the interior black hole is kicked out of when the supernova event happens, while the other hemi-sphere will be (to different degrees) moving with it, and so the former hemi-sphere that moves in the opposite direction will especially near the equatorial plane be able to separate itself the fastest and furthest from the massive black hole, as it is ejected into with gas filled space in the early universe, which (by rapidly induced increasing mass-density) seeds the formation of further population III stars from eventually collapsing gas clouds more likely there, namely close to this plane, than elsewhere, and compared to if the black hole in the core were to have been ejected at small angle to the axis of rotation of the pop. III star (which should rather turn the from it resulting galaxy into an elliptical one), more mass should be able to be separated from the massive black hole (and around it forming galaxy), consistently to observations leading to less massive galaxies, namely of disc or spiral shape, than what the mass of elliptical galaxies tends to be like. [Satellite-galaxies tend to be located within a plane around Andromeda or our galaxy, respectively: "Major Mystery of Galactic Orbits Around Milky Way Potentially Solved": https://www.youtube.com/watch?v=Fj_r_Jd9U2U]
(iv) The ratio of elliptical galaxies to spiral galaxies, or that statistically there is more spiral galaxies than elliptical galaxies [reference: "Approximately 60% of all galaxies are thought to be spiral galaxies, making spiral galaxies the home of the majority of the stars in the Universe." https://esahubble.org/wordbank/spiral-galaxy/ ]: Assuming that population III stars indeed are what galaxies originate from and that asymmetric ejection of massive black holes in their cores lead rather to spiral galaxies if the direction of ejection is at small angle to their plane of rotation, and that otherwise, at small angle of ejection to their axis of rotation, the resulting galaxy is rather an elliptical one, the larger abundance of spiral galaxies can be explained due to the probability (assuming near uniform probability distribution for the direction of outward ejection of the black hole at the core) of the black hole at the core being ejected at small angle to the plane of rotation being higher than if it were ejected at small angle to the axis of rotation instead. [citation or geometric argumentation needed]
(v) The higher metallicity of our galaxy compared to at least 1 of its satellite galaxies, based on the metallicity of a representative star of it: In a study [citation needed; Anton Petrov covered the study], the iron abundance of a star of 1 of Milky Way's satellite galaxies was compared to the typical abundance of iron in stars of our galaxy and it was found to be lower, speaking for a later formation of a population III star creating this satellite galaxy upon supernova explosion, which is consistent with that population III star's formation having happened at later time than that of the population III star that formed our galaxy, which is consistent with its formation having been caused by the supernova explosion of our galaxy's former population III star, if they existed. And due to the layering of differently heavy chemical elements in stars in general but in particular in our galaxy's preceding pop. III star, less metallicity would have been ejected by its supernova to further away regions to end up in satellite galaxies compared to the Milky Way galaxy.[citation or physical explanation needed]
(vi) The larger mass of our galaxy compared to its satellite galaxies, and the same for the Andromeda galaxy: This would be consistent with the formation of those galaxies having started later in the early universe, when the cosmic gas density from which to form those stars already was lower, and hence the possibility that our galaxy's former population III star triggered their formation with its own supernova.[citation or physical explanation needed]
(vii) All heavier kinds of quark and neutrino flavors are unstable, and so if this pattern applies in general, then heavier dark matter may be unstable as well and decay or turn into stable but less massive dark matter, of which the ultra-lightweight neutrinos would be a suitable candidate (even though their hypothesized flavor oscillations indicate that even they may not be quite stable in flavor).
Section: Annihilation of dark matter
There has been a number of proposed astronomical observational indications for annihilation of dark matter happening throughout the universe:
I propose the addition of the following link to the whitelist: //vixra.org/abs/2411.0075 195.192.195.234 (talk) 12:17, 26 January 2025 (UTC)
In this section, "neutrinos" generally refers to all 6 known to exist kinds of neutrinos (namely of matter or antimatter type and with 3 different flavors each), rather than just non-antimatter neutrinos.
There is plenty of evidence (see below) speaking for the ability of cold dark matter (CDM) to annihilate with stars' neutrinos, which - according to the standard theory of particle physics - only the anti-particles of the same neutrino-flavor can do (which then either a different dark matter particle type were to have to be able to turn or decay into, which then also would imply a far larger than expected abundance of neutrinos, or otherwise maybe the known types of neutrinos would then have to be able to turn into different dark matter particles, which then probably should've shown up statistically in the plenty dark matter search experiments dealing with or approaching the "neutrino fog"), which specifies, narrows down the type of ultra-lightweight dark matter to these neutrinos (among the current list of CDM particle candidates).
The following is an incomplete list of 30 pieces of evidence that speak for dark matter's ability to either decay (and then especially preferably so nearby stars) upon particle or field interaction or possibly as unstable matter on its own, or to undergo matter-antimatter annihilation:
(i) The so-called core cusp problem [Wikipedia has a page on this, which probably should be linked here in future edits; Core cusp problem: https://en.wikipedia.org/wiki/Cuspy_halo_problem]: CDM models tend to result in radial galactic CDM distributions that possess a spike, a sharp upward trend in the abundance of CDM near the galactic center [TODO: cite existing studies on this fact], which appears to be in disagreement with best fits of models with which actual astronomical observations of galaxies are approximated, namely where the CDM density near the center is lower.[citations are missing for this, but scientific studies to cite that support this observation exist]
(ii) The so-called "immortal stars" [TODO: insert immortal stars study link reference possible to find here: "Strange Discoveries About Dark Matter Including Immortal Stars": https://www.youtube.com/watch?v=lK7C0iZvEr0 (in general, links to studies are in Anton Petrov's videos' description boxes)] near the Milky Way's center: In this region, the galactic CDM density is assumed to be the highest [citation is needed but plenty studies support this claim], and so since stars are intense sources of (relativistic) neutrinos and anti-neutrinos [citation missing], annihilation of these (anti-)neutrinos and CDM (if it is (anti-)neutrinos) inside them can happen frequently enough to contribute to stars' internal light-pressure, substituting their fusion processes partially, and slowing down with respect to what these stars' normal development would be like.[this would be content and part of the conclusion of the immortal stars study; "Strange Discoveries About Dark Matter Including Immortal Stars": https://www.youtube.com/watch?v=lK7C0iZvEr0 (in general, links to studies are in Anton Petrov's videos' description boxes)]
(iii) The so-called Cepheid mass discrepancy [Wikipedia has a page on this to cite as reference here] (since many of them are near the galactic center, a high CDM density region): Theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10-20% [citation: "A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10-20%." https://www.aanda.org/articles/aa/full_html/2011/05/aa16920-11/aa16920-11.html ]. The hypothesized interference caused by CDM due to its annihilation within stars is a likely explanation candidate for this phenomenon, since it slows down stellar evolution relative to its normal pace. [the immortal stars study could be cited here for this argument, again]
(iv) The GS NDG 9422 galaxy's spectrum mystery [paper references should be possible to find here: "JWST finds galaxy where the gas outshines the stars?! | Night Sky News October 2024": https://www.youtube.com/watch?v=u8DRSqVjTVA]: It is one of the furthest away and hence at youngest age observed galaxies, at a time during which as mutually annihilating hypothesized (anti-) neutrinos (including CDM neutrinos) would still have contained a much larger abundance of CDM neutrinos that over billions of years would follow more or less an exponential decay curve in their abundance due to less and less likely becoming chances of annihilation the more of finitely many and only in the beginning provided CDM neutrinos were to remain, and this galaxy's spectrum contains a normally absent, tall, sharp intensity spike in the ultra-violet wavelength range, immediately followed by a normally also absent smaller hill-shape in the spectrum that extends towards longer wavelengths. The plausible cause is the annihilation of CDM outside of stars (though possibly with their relativistic neutrinos) for the sharp intensity spike in the UV range, as well as annihilation of CDM within stars leading to a then random-walk-based smeared out light intensity hill in the spectrum (as light distributes its energy across more and more photons by repeated absorption and emission processes on its way to exit a star, increasing the wavelength of each photon).[citation or physical explanation e.g. in regard to random walks of light in stars needed]
(v) The higher relative CDM abundance in spiral galaxies compared to elliptical galaxies [citation is needed, but studies exist]: Since elliptical galaxies fill out more of the 3-dimensional space near their galactic center in more close-meshed manner than spiral galaxies with just their central bulge followed by stars further out almost only being contained within a 2-dimensional plane, elliptical galaxies' stars should - due to their different arrangement - be better equipped to annihilate CDM over billions of years, leaving higher CDM abundances in spiral galaxies rather than in elliptical ones.
(vi) The fact that closer, at older age seen galaxies tend to have lower (to their baryonic matter abundance) relative CDM abundance than further away located galaxies [citation is needed, but again, studies exist]: Again, qualitatively speaking, this trend would fit to the assumption of CDM being annihilated over time.
(vii) The so-called solar (electron) neutrino problem (in which only about a third of the expected rate of specifically electron neutrinos is detected on earth, which lead to the neutrino flavor-oscillation hypothesis) [Wikipedia has a page on this topic]: This phenomenon would be better explainable if some of these neutrinos annihilate with neutrino-based galactic CDM along the way. [Solar (electron-)neutrino problem: https://en.wikipedia.org/wiki/Solar_neutrino_problem]
(viii) The so-called coronal heating problem (since the sun's surface temperature is higher than expected, for yet not quite fully understood reasons) [Wikipedia also has a page on this matter]: CDM's annihilation in the vicinity of the sun (as it's an intense neutrino source) would also send highly energetic photons from various distances and directions onto its surface, which would then contribute to an explanation to this heat-related problem. [Coronal heating problem: https://en.wikipedia.org/wiki/Stellar_corona (to which CDM-annihilation can and should contribute but likely isn't the sole reason for)]
(ix) The high luminosity and from it inferred and seemingly too high mass of multiple far away galaxies already at young age of the universe [citation is needed but many studies point out this discrepancy or unexpected observation]: If in ancient times created CDM before galaxies existed were to annihilate away in exponential decay manner, then this would lead to a higher than the only from other light-sources expected to come luminosity by contributing to it, which otherwise would also mistakenly be translated into the too high seeming masses of these galaxies.
(x) The glowing vicinity of the supermassive black hole of our galaxy: Annihilation of CDM in the galactic center, especially nearby the in this region more densely packed stars as neutrino sources could explain this glow. [The glow in the vicinity of the super-massive black hole of our galaxy: "Mysterious Glow In The Middle of Milky Way, But What is It?": https://www.youtube.com/watch?v=rUik4nZL5Bc]
(xi) The so-called ultra-blue stars that have been found in some galaxies' centers: Similar to point (iv), by CDM annihilation inside stars created UV-light can help better explain the existence of these stars, especially since they have been found in the region they would have to be in (namely galaxies' centers) for CDM annihilation to become significant enough, rather than if they were found in regions with low expected abundance of CDM in a galaxy, in which case for stars closer to the center, many of them should be ultra-blue as well, and even more so. [So-called ultra-blue stars: https://science.nasa.gov/missions/hubble/rare-ultra-blue-stars-found-in-neighboring-galaxys-hub/]
(xii) So-called UV-bumps in certain stars' spectra, making them look like the super-position (by addition of intensities) of spectra resulting from different causes or processes (depending on the local CDM density within and nearby a given star): Again, annihilation of CDM leading to high energy photons is an explanation candidate for this phenomenon and may also lead to some young stars (like those formed at starburst events) appear to be more blue than they normally should be when they are low in mass.
(xiii) The glowing filament segments that exist throughout and around our galaxy: If colliding stellar black holes have CDM orbit them in large abundances and leak streams of CDM as they are accelerated around each other, carrying momentum away and helping resolve the final parsec problem, then this plausible source of these glowing galactic filaments would imply that their glow results from annihilation of these neutrinos with each other and with the galactic CDM. [Glowing (segments of) filaments around our galaxy: "Turns Out Magnetic Filaments In The Milky Way Are Different Compared to Other Galaxies": https://www.youtube.com/watch?v=QjM-iyTYaQ4 "1000 Of Unexplained Radio Filaments Found In Milky Way's Center": https://www.youtube.com/watch?v=h59uLPBcXgs "Strange Filament Structures Found in Milky Way's Center": https://www.youtube.com/watch?v=-xt6OKey7OQ "Mysterious Filament Structures Stretching Toward Milky Way Black Hole": https://www.youtube.com/watch?v=Z3r6JjrgfdY ]
(xiv) The so-called Maia stars' mysterious pulsation (seemingly without metallicity-based explanation for their pulsation): Varying CDM densities in the regions that these stars move through would be an alternative possible cause of such pulsations, since the internal light-pressure (based on CDM annihilation) would depend on this density. (xv) The red & yellow & blue straggler stars: These are stars that (relative to representative stars for their type) appear to be too red or too blue, which could be explained by unusual low or high CDM densities (depending on the region a star is in, relative to its galaxy) compared to the average CDM density, since the extent of its annihilation would then contribute to the blue-ness of their appearance. [An explanation on Maia stars and their mystery: "Prof. G. Handler (CAMK PAS): The enigmatic “Maia variables”: an impossible class of pulsating stars?": https://www.youtube.com/watch?v=q_uD5c8Ebic "For stars to exhibit pulsations, a mechanism driving the oscillations is required. Several such mechanisms are known and are associated with certain properties of the oscillating star. As a consequence, different groups of pulsating stars occur in specific regions in the HR Diagram: their instability strips. However, there have been reports of pulsating stars outside of the known instability strips. Perhaps the most (in)famous ones have been named the "Maia variables", a group of late B to early A type stars that apparently show pressure mode oscillations, but are located outside any known instability strips. The existence of such variables has been controversial since the 1950s and it has meanwhile been demonstrated that Maia itself does not show detectable pulsations. Nevertheless, in recent years some reports of related objects have appeared in the literature, mostly based on highly accurate space photometry. To investigate the nature of these objects, we have obtained and analyzed high resolution spectra of 31 of these objects as well as examined their TESS photometric data. According to our results, many of these stars are normal pulsators of the Beta Cephei and Delta Scuti types, but some objects remain outside of any known instability strip. We have checked those for contamination in the large TESS pixels, possible binarity and rapid rotation. In this presentation, we discuss how many of those stars can indeed be considered to be pulsators "without a cause" (if any) and why, and whether there is substantial evidence for a class of "Maia variables." ?Wednesday colloquium at CTP PAS – 2024-03-13"]
(xvi) The low-density objects that are the so-called G-objects near the center of the Milky Way galaxy: These are objects that - based on their spectrum - even look like gas but behave like stars and (fittingly) expand when they approach the galactic center, and as such, they may be extreme cases of stars that caged especially large amounts of CDM around themselves, so that its annihilation increases their (coronal) temperature and makes them expand, especially the higher the CDM density is, i.e. when they are close to the galactic center. ["G-objects: Strange New Discovery From The Galactic Center": https://www.youtube.com/watch?v=ES8pP83slXU ; "Strange Star Like Objects Around Central Black Hole Finally Explained": https://www.youtube.com/watch?v=Cw57obKuVCM]
(xvii) The mysterious glow inside the solar system, in the sun's vicinity: Once again, if CDM annihilation happens in space, especially nearby the sun for all the over billions of years caught galactic CDM of which parts could with swing-by interactions especially via the more massive gas planets be moved to closer orbits around the sun, then that may explain this phenomenon. [The mysterious glow of space near the sun: "Hubble Uncovers Mystery Glow Inside the Solar System, But What's Causing It?": https://www.youtube.com/watch?v=biCCNrTNk0s]
(xviii) The re-ionization of the early universe: If Galaxies started out with highest amounts of CDM initially that back then rapidly annihilated away but later would do so at slower and slower pace, then this annihilation contributing to galaxies' luminosity can help explain the cause of the re-ionization of the gas throughout the universe. [Re-Ionisation: https://en.wikipedia.org/wiki/Reionization]
(xix) The existence of blue straggler stars in globular star clusters: These clusters are expected to have been formed in ancient times and to not have (as many) blue straggler stars (since blue stars are expected to be the most massive O and B type stars with highest temperatures that don't last long), and yet they exist, but this may be explainable by globular star clusters caging galactic CDM with in the gravitational wells of such clusters when CDM is slowing down on its way away from the galactic center in its motion of swinging through and around it, to increase the CDM density specifically in such clusters, allowing for more blue stars. [Blue stragglers in globular star clusters: "Blue Stragglers in Globular Clusters: Observations, Statistics and Physics": https://arxiv.org/abs/1406.3493]
(xx) Galactic glowing filament segments very close to each other appearing to be winding around each other or gravitationally attracting each other: If the cause of these filaments isn't due to other reasons like possibly a galactic magnetic field, then if they appear to attract each other, which in some cases they do, this would speak for invisible CDM particle flows (in very large abundances for gravitational attraction to be noticeable) causing these (then due to annihilation) glowing filament segments.[citation needed; Anton Petrov covered these filaments in videos already referenced in (xiii)]
(xxi) Galactic glowing filament segments appearing to be tidally stretched differently much, depending on their location and orientation with respect to the Milky Way galaxy: Again, if CDM particle flows describe these filaments, then the fact that they are more stretched near the galactic center when their orientation is close to orthogonal to the galactic plane (so that the whole plane is one 1 side of the filament, pulling on its parts differently strong, depending on the distance) compared to when they are oriented closer to a direction parallel to the plane can be better explained. [citation needed; Anton Petrov covered these filaments in videos already referenced in (xiii)]
(xxii) Prof. Dr. Richard Massey's dark matter distribution map from 2007: It supports the hypothesis that black holes in general (including super-massive black holes) at collision eject or leak dark matter escaping their gravitational wells (depending on how the masses of colliding black holes compare, which affects how much either of them is accelerated and hence which of them leak how much CDM, if any) in the first place, given the (double-)cone shape(s) that every single dark matter bubble in the reconstructed distribution map possesses. [Prof. Massey's Dark Matter Map: https://esahubble.org/news/heic0701/ ]
(xxiii) The glow of young brown dwarfs: Based on current explanation attempts, they're supposed to glow due to left-over heat from the formation and due to the shrinking process, or to even glow due to some instances of fusion, but alternatively, by attracting galactic CDM and annihilation of it (with itself, so without relativistic neutrinos from stars in this case) in their vicinity, similar to the coronal heating problem's situation, see (viii), leading to radiation onto their surfaces, this could heat them up and contribute to the full explanation. [Glowing, hot brown dwarf planets: "3 Brown Dwarfs That Defy Current Physics Models": https://www.youtube.com/watch?v=p45j-eB0fvo]
In addition, there is another piece of evidence that I hadn't mentioned yet, namely the glow of (also) neutron stars: "Do Neutron Stars Shine In Dark Matter?": https://www.youtube.com/watch?v=W4SnKp4BhP4
And furthermore, a very recent study covering an about 40 times more luminous than (based on the Eddington limit) expected to be possible super-massive black hole provides yet more plausible reason for believing that dark matter annihilates: "Intriguing Explanation for a Black Hole So Bright It Shouldn't Exist": https://www.youtube.com/watch?v=MHrnq5c_sx8 “A super-Eddington-accreting black hole ~1.5?Gyr after the Big Bang observed with JWST”: https://www.nature.com/articles/s41550-024-02402-9
— Preceding unsigned comment added by 195.192.195.234 (talk) 12:17, 26 January 2025 (UTC)
- Oppose No reliable sources. Johnjbarton (talk) 15:45, 26 January 2025 (UTC)
- Yeah, the citation of viXra clearly shows that this user is fundamentally unserious. Hemiauchenia (talk) 16:06, 26 January 2025 (UTC)
- Actually, I don't see a good reason to keep this proposal open if the proposed content contains no citations to reliable sources. This would have a snowball's chance in hell of passing. ZergTwo (talk) 16:13, 26 January 2025 (UTC)
- Yeah, the citation of viXra clearly shows that this user is fundamentally unserious. Hemiauchenia (talk) 16:06, 26 January 2025 (UTC)
- Delisted good articles
- Old requests for peer review
- B-Class level-4 vital articles
- Wikipedia level-4 vital articles in Physical sciences
- B-Class vital articles in Physical sciences
- B-Class Astronomy articles
- Top-importance Astronomy articles
- B-Class Astronomy articles of Top-importance
- B-Class Cosmology articles
- B-Class physics articles
- Top-importance physics articles
- B-Class physics articles of Top-importance
- Wikipedia pages referenced by the press